Neural encoding of multiple motion speeds in visual cortical area MT

Author:

Huang Xin1,Ghimire Bikalpa1,Chakrala Anjani Sreeprada1,Wiesner Steven1

Affiliation:

1. Department of Neuroscience, University of Wisconsin-Madison

Abstract

Segmenting objects from each other and their background is critical for vision. The speed at which objects move provides a salient cue for segmentation. However, how the visual system represents and differentiates multiple speeds is largely unknown. Here we investigated the neural encoding of multiple speeds of overlapping stimuli in the primate visual cortex. We first characterized the perceptual capacity of human and monkey subjects to segment spatially overlapping stimuli moving at different speeds. We then determined how neurons in the motion-sensitive, middle-temporal (MT) cortex of macaque monkeys encode multiple speeds. We made a novel finding that the responses of MT neurons to two speeds of overlapping stimuli showed a robust bias toward the faster speed component when both speeds were slow (≤ 20°/s). The faster-speed bias occurred even when a neuron had a slow preferred speed and responded more strongly to the slower component than the faster component when presented alone. The faster-speed bias emerged very early in neuronal response and was robust over time and to manipulations of motion direction and attention. As the stimulus speed increased, the faster-speed bias changed to response averaging. Our finding can be explained by a modified divisive normalization model, in which the weights for the speed components are proportional to the responses of a population of neurons elicited by the individual speeds. Our results suggest that the neuron population, referred to as the weighting pool, includes neurons that have a broad range of speed preferences. As a result, the response weights for the speed components are determined by the stimulus speeds and invariant to the speed preferences of individual neurons. Our findings help to define the neural encoding rule of multiple stimuli and provide new insight into the underlying neural mechanisms. The faster-speed bias would benefit behavioral tasks such as figure-ground segregation if figural objects tend to move faster than the background in the natural environment.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3