A dynamical systems treatment of transcriptomic trajectories in hematopoiesis

Author:

Freedman Simon L.ORCID,Xu Bingxian,Goyal Sidhartha,Mani MadhavORCID

Abstract

Inspired by Waddington’s illustration of an epigenetic landscape, cell-fate transitions have been envisioned as bifurcating dynamical systems, wherein the dynamics of an exogenous signal couples to a cell’s enormously complex signaling and transcriptional machinery, eliciting a qualitative transition in the collective state of a cell – its fate. It remains unclear, however, whether the dynamical systems framework can go beyond a word-based caricature of the system and provide sharp quantitative insights that further our understanding of differentiation. Single-cell RNA sequencing (scRNA-seq), which measures the distributions of possible transcriptional states in large populations of differentiating cells, provides an alternate view, in which development is marked by the individual concentration variations of a myriad of genes. Here, starting from formal mathematical derivations, we challenge these transcriptomic trajectories to a rigorous statistical evaluation of whether they display signatures consistent with bifurcations. After pinpointing bifurcations along transcriptomic trajectories of the neutrophil branch of hematopoeitic differentiation we are able to further leverage the primitive features of a linear instability to identify the single-direction in gene expression space along which the bifurcation unfolds and identify possible gene contributors. This scheme identifies transcription factors long viewed to play a crucial role in the process of neutrophil differentiation in addition to identifying a host of other novel genetic players. Most broadly speaking, we provide evidence that, though very high-dimensional, a bifurcating dynamical systems formalism might be appropriate for the process of cellular differentiation and that it can be leveraged to provide insights. Ambitiously, our work attempts to take a step beyond data-analysis and towards the construction of falsifiable mathematical models that describe the dynamics of the entire transcriptome.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3