Characterizing transition cells in developmental processes from scRNA-seq data

Author:

Wang YuanxinORCID,Mohanty Vakul,Dou Jinzhuang,Liang Shaoheng,Liang Qingnan,Tan Yukun,Li Jin,Li Ziyi,Chen Rui,Chen Ken

Abstract

AbstractMulti-cellular organism development involves orchestrated gene regulations of different cell types and cell states. Single-cell RNA-Seq, enable simultaneous observation of cells in various states, making it possible to study the underlying molecular mechanisms. However, most of the analytical methods do not make full use of the dynamics captured. Here, we model single-cell RNA-seq data obtained from a developmental process as a function of gene regulatory network using stochastic differential equations (SDEs). Based on dynamical systems theory, we showed that pair-wise gene expression correlation coefficients can accurately infer cell state transitions and validated it using mouse muscle cell regeneration scRNA-seq data. We then applied our analytical framework to the PDAC (Pancreatic ductal adenocarcinoma) mouse model scRNA-seq data. Through transition cells found in the pancreatic preinvasive lesions scRNA-seq data, we can better explain the heterogeneity and predict distinct cell fate even at early tumorigenesis stage. This suggests that the biomarkers identified by transition cells can be potentially used for diagnosis, prognosis and therapeutics of diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3