Acute sleep deprivation induces synaptic remodeling at the soleus muscle neuromuscular junction in rats

Author:

Sharma BinneyORCID,Roy AvishekORCID,Sengupta Trina,Vishwakarma Lal Chandra,Singh Anuraag,Netam Ritesh,Nag Tapas ChandraORCID,Akhtar Nasreen,Mallick Hruda Nanda

Abstract

AbstractSleep is important for cognitive and physical performance. Sleep deprivation not only affects neural functions but also results in muscular fatigue. A good night’s sleep reverses these functional derangements caused by sleep deprivation. The role of sleep in brain function has been extensively studied. However, its role in neuromuscular junction or skeletal muscle morphology is sparsely addressed although skeletal muscle atonia and suspended thermoregulation during rapid eye movement sleep possibly provides a conducive environment for the muscle to rest and repair; somewhat similar to slow-wave sleep for synaptic downscaling. In the present study, we have investigated the effect of 24 h sleep deprivation on the neuromuscular junction morphology and neurochemistry using electron microscopy and immunohistochemistry in the rat soleus muscle. Acute sleep deprivation altered synaptic ultra-structure viz. mitochondria, synaptic vesicle, synaptic proteins, basal lamina, and junctional folds needed for neuromuscular transmission. Further acute sleep deprivation showed the depletion of the neurotransmitter acetylcholine and the overactivity of its degrading enzyme acetylcholine esterase at the neuromuscular junction. The impact of sleep deprivation on synaptic homeostasis in the brain has been extensively reported recently. The present evidence from our studies shows new information on the role of sleep on neuromuscular junction homeostasis and its functioning.Statement of significanceSleep causes synaptic downscaling in the brain, and allows the brain to carry out various housekeeping functions. Here we have reported that the function of the sleep-wake cycle on the synaptic homeostasis extends beyond the brain. Acute sleep deprivation caused significant alteration at ultra and macrostructure of antigravity muscle and the neuromuscular junction along with adaptation to new fiber type in rats. These morpho-functional changes were well correlated with the biochemical assessment of the acetylcholine at the neuromuscular junction. These changes were partially recovered when the rats were allowed to recover from sleep deprivation. The findings suggest a new avenue for a sleep study; employing the neuromuscular junction for exploring the effect of sleep at energy and synaptic homeostasis levels.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3