Expanding an expanded genome: long-read sequencing ofTrypanosoma cruzi

Author:

Berná LuisaORCID,Rodríguez Matías,Chiribao María Laura,Parodi-Talice Adriana,Pita Sebastián,Rijo Gastón,Alvarez-Valin Fernando,Robello Carlos

Abstract

Although the genome ofTrypanosoma cruzi, the causative agent of Chagas disease, was first made available in 2005, with additional strains reported later, the intrinsic genome complexity of this parasite (abundance of repetitive sequences and genes organized in tandem) has traditionally hindered high-quality genome assembly and annotation. This also limits diverse types of analyses that require high degree of precision. Long reads generated by third-generation sequencing technologies are particularly suitable to address the challenges associated withT. cruzi´sgenome since they permit directly determining the full sequence of large clusters of repetitive sequences without collapsing them. This, in turn, allows not only accurate estimation of gene copy numbers but also circumvents assembly fragmentation. Here, we present the analysis of the genome sequences of twoT. cruziclones: the hybrid TCC (DTU TcVI) and the non-hybrid Dm28c (DTU TcI), determined by PacBio SMRT technology. The improved assemblies herein obtained permitted us to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements). We found that the genome ofT. cruziis composed of a "core compartment" and a "disruptive compartment" which exhibit opposite gene and GC content composition. New tandem and disperse repetitive sequences were identified, including some located inside coding sequences. Additionally, homologous chromosomes were separately assembled, allowing us to retrieve haplotypes as separate contigs instead of a unique mosaic sequence. Finally, manual annotation of surface multigene families MUC and trans-sialidases allows now a better overview of these complex groups of genes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3