Simulation of visual perception and learning with a retinal prosthesis

Author:

Golden James R.,Erickson-Davis Cordelia,Cottaris Nicolas P.,Parthasarathy Nikhil,Rieke Fred,Brainard David H.,Wandell Brian A.ORCID,Chichilnisky E.J.ORCID

Abstract

AbstractThe nature of artificial vision with a retinal prosthesis, and the degree to which the brain can adapt to the unnatural input from such a device, are poorly understood. Therefore, the development of current and future devices may be aided by theory and simulations that help to infer and understand what prosthesis patients see. A biologically-informed, extensible computational framework is presented here to predict visual perception and the potential effect of learning with a subretinal prosthesis. The framework relies on optimal linear reconstruction of the stimulus from retinal responses to infer the visual information available to the patient. A simulation of the physiological optics of the eye and light responses of the major retinal neurons was used to calculate the optimal linear transformation for reconstructing natural images from retinal activity. The result was then used to reconstruct the visual stimulus during the artificial activation expected from a subretinal prosthesis in a degenerated retina, as a proxy for inferred visual perception. Several simple observations reveal the potential utility of such a simulation framework. The inferred perception obtained with prosthesis activation was substantially degraded compared to the inferred perception obtained with normal retinal responses, as expected given the limited resolution and lack of cell type specificity of the prosthesis. Consistent with clinical findings and the importance of cell type specificity, reconstruction using only ON cells, and not OFF cells, was substantially more accurate. Finally, when reconstruction was re-optimized for prosthesis stimulation, simulating the greatest potential for learning by the patient, the accuracy of inferred perception was much closer to that of healthy vision. The reconstruction approach thus provides a more complete method for exploring the potential for treating blindness with retinal prostheses than has been available previously. It may also be useful for interpreting patient data in clinical trials, and for improving prosthesis design.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. Origin and effect of phototransduction noise in primate cone photoreceptors

2. pulse2percept: A Python-based simulation framework for bionic vision;bioRxiv,2017

3. Photovoltaic pixels for neural stimulation: circuit models and performance;IEEE Trans. Biomed. Circuits Syst,2016

4. Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes

5. Chambers JM. Computational methods for data analysis. New York: Wiley, 1977.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3