Author:
Cottaris Nicolas P.,Jiang Haomiao,Ding Xiaomao,Wandell Brian A.,Brainard David H.
Abstract
We present a computational observer model of the human spatial contrast sensitivity (CSF) function based on the Image Systems EngineeringTools for Biology (ISETBio) simulation framework. We demonstrate that ISETBio-derived CSFs agree well with CSFs derived using traditional ideal observer approaches, when the mosaic, optics, and inference engine are matched. Further simulations extend earlier work by considering more realistic cone mosaics, more recent measurements of human physiological optics, and the effect of varying the inference engine used to link visual representations to psy-chohysical performance. Relative to earlier calculations, our simulations show that the spatial structure of realistic cone mosaics reduces upper bounds on performance at low spatial frequencies, whereas realistic optics derived from modern wavefront measurements lead to increased upper bounds high spatial frequencies. Finally, we demonstrate that the type of inference engine used has a substantial effect on the absolute level of predicted performance. Indeed, the performance gap between an ideal observer with exact knowledge of the relevant signals and human observers is greatly reduced when the inference engine has to learn aspects of the visual task. ISETBio-derived estimates of stimulus representations at different stages along the visual pathway provide a powerful tool for computing the limits of human performance.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献