Abstract
AbstractEnvironmental conditions affect virus inactivation rate and transmission potential. Understanding those effects is critical for anticipating and mitigating epidemic spread. Ambient temperature and humidity strongly affect the inactivation rate of enveloped viruses, but a mechanistic, quantitative theory of those effects has been elusive. We measure the stability of the enveloped respiratory virus SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and develop a mechanistic model to explain and predict how temperature and humidity alter virus inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative humidities; median estimated virus half-life is over 24 hours at 10 °C and 40 % RH, but approximately 1.5 hours at 27 °C and 65 % RH. Our mechanistic model uses simple chemistry to explain the increase in virus inactivation rate with increased temperature and the U-shaped dependence of inactivation rate on relative humidity. The model accurately predicts quantitative measurements from existing studies of five different human coronaviruses (including SARS-CoV-2), suggesting that shared mechanisms may determine environmental stability for many enveloped viruses. Our results indicate scenarios of particular transmission risk, point to pandemic mitigation strategies, and open new frontiers in the mechanistic study of virus transmission.
Publisher
Cold Spring Harbor Laboratory
Reference66 articles.
1. The stability of bacterial viruses in solutions of salts;In: The Journal of general physiology,1949
2. Influenza A virus is transmissible via aerosolized fomites
3. An Outbreak of COVID-19 Associated with a Recreational Hockey Game-Florida, June 2020;In: Morbidity and Mortality Weekly Report,2020
4. Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic
5. Some Factors Affecting the Survival of Airborne Viruses
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献