In vivo single-cell analysis using calcofluor - white staining detects high expression phenotype in L. lactis cultures engineered for hyaluronic acid production

Author:

Muthukrishnan Anantha-BarathiORCID,Häkkinen AnttiORCID,Rajendran Velvizhi Devi,Kozhiyalam Anupama,Jayaraman GuhanORCID

Abstract

ABSTRACTHyaluronic acid (HA) is a biopolymer with wide applications in the field of medicine and cosmetics. Bacterial production of HA has a huge market globally. Certain species of Streptococcus are native producers of HA but they are pathogenic. Therefore, safer organisms such as L. lactis are engineered for HA production. However, there are challenges such as low yield, low molecular weight and polydispersity of HA obtained from these cultures. Optimisation of bioprocess parameters and downstream purification parameters are being addressed to overcome these challenges. We explore these problems from the perspective of microbial heterogeneity, since variations in phenotype affect the yield and properties of the product in a bioreactor. For this perspective, a method to quantitatively assess the occurrence of heterogenous phenotypes depending on the amount of HA produced at the single-cell level is required. Here, we evaluated for the first time the use of calcofluor white staining method combined with in vivo fluorescence confocal microscopy to quantify the heterogeneity in phenotypes of L. lactis cells engineered for HA production.From the microscopy image analysis, we found that the population harbours significant heterogeneity with respect to HA production and our novel approach successfully differentiates these phenotypes. Using the fluorescence intensity levels, first we were able to confidently differentiate cells not expressing HA (Host cells without HA genes for expression) from cells with genes for HA production (GJP2) and induced for expression, as there is a consistently two-fold higher level of expression in the GJP2 cells independently of the cell size. Further, this method revealed the occurrence of two different phenotypes in GJP2 cultures, one of a high-expression phenotype (40% of the population) and the other one of a low-expression (remaining 60% of the population), and it is the high expression phenotype that contributes to the increase in the HA expression of the GJP2 population compared with the host cells. Thus, it is essential to identify the extrinsic and intrinsic factors that can favour most of the cells in the population to switch and stabilise into the high-expression phenotype state in a bioreactor, for higher yield and possibly reduced heterogeneity of the product, such as polydispersity in chain lengths. For such optimisation studies, this in vivo method serves as a promising tool for rapid detection of phenotypes in the bioreactor samples under varying conditions, allowing fine tuning of the factors to stabilise high-expression phenotypes thereby maximizing the yield.Graphical Abstractdone.Key PointsCalcofluor staining successfully differentiated the phenotypes based on HA levels.This study revealed the occurrence of significant heterogeneity in HA expression.This method will aid for rapid optimization of factors for improved HA production.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3