Abstract
The effect of five culture variables on the molecular weight properties of hyaluronic acid (HA) produced by Streptococcus zooepidemicus was studied in batch culture with a complex medium containing glucose and 10 g of yeast extract per liter. Neither the culture pH (pH 6.3 to 8.0) nor the agitation speed (300 to 1,000 rpm) affected the weight-average molecular weight (M(infw)) of HA under anaerobic conditions at 37(deg)C when 20 g of glucose per liter was used initially. M(infw) was in the narrow range of 1.5 x 10(sup6) to 2.3 x 10(sup6), and polydispersity (P) was between 1.8 and 2.5. When S. zooepidemicus was grown at lower temperatures or with aeration, higher-molecular-weight polymer and increased yields were observed. The polydispersity, however, remained unaffected. Anaerobically, the mean M(infw) (based on three samples taken within 4 h of glucose exhaustion) was (2.40 (plusmn) 0.10) x 10(sup6) and (1.90 (plusmn) 0.05) x 10(sup6) at 32 and 40(deg)C respectively. Aeration of the culture at 1 vol/vol/min produced HA with mean M(infw) of (2.65 (plusmn) 0.05) x 10(sup6) compared with (2.10 (plusmn) 0.10) x 10(sup6) under equivalent anaerobic conditions. The initial glucose concentration had the most pronounced effect on polymer characteristics. Increasing this concentration from 20 to 40 g/liter produced HA with mean M(infw) of (3.1 (plusmn) 0.1) x 10(sup6) at 1-vol/vol/min aeration. The molecular weight of HA also exhibited time dependency, with smaller chains (M(infw), ca. 2.5 x 10(sup6)) detected early in the culture time course, rising to a maximum (M(infw), 3.2 x 10(sup6)) in the late exponential phase of growth. The mean polydispersity was also greater (2.7 (plusmn) 0.1) under these conditions. Replicate experiments performed under conditions resulting in the lowest (40(deg)C, anaerobic) and highest (40 g of glucose per liter, 1-vol/vol/min aeration)-M(infw) polymer demonstrated excellent experimental reproducibility.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
109 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献