The single-progenitor model as the unifying paradigm of squamous epithelial maintenance

Author:

Piedrafita Gabriel,Kostiou Vasiliki,Wabik Agnieszka,Colom Bartomeu,Fernandez-Antoran David,Herms Albert,Murai Kasumi,Hall Benjamin A,Jones Philip H

Abstract

AbstractAdult tissues such as the epidermis of the skin and the epithelium lining the esophagus are continuously turned over throughout life. Cells are shed from the tissue surface and replaced by cell division. Yet, the cellular mechanisms that underpin these tissues homeostasis remain poorly established, having important implications for wound healing and carcinogenesis. Lineage tracing, in which of a cohort of proliferating cells and their descendants are genetically labelled in transgenic mice, has been used to study the fate behavior of the proliferating cells that maintain these tissues. However, based on this technique, distinct mutually irreconcilable models, differing in the implored number and hierarchy of proliferating cell types, have been proposed to explain homeostasis. To elucidate which of these conflicting scenarios should prevail, here we performed cell proliferation assays across multiple body sites in transgenic H2BGFP mouse epidermis and esophagus. Cell-cycle properties were then extracted from the H2BGFP dilution kinetics and adopted in a common analytic approach for a refined analysis of a new lineage-tracing experiment and eight published clonal data sets from esophagus and different skin territories. Our results show H2BGFP dilution profiles remained unimodal over time, indicating the absence of slow-cycling stem cells across all tissues analyzed. We find that despite using diverse genetic labelling approaches, all lineage-tracing data sets are consistent with tissues maintenance by a single population of proliferating cells. The outcome of a given division is unpredictable but, on average the likelihood of producing proliferating and differentiating cells is balanced, ensuring tissue homeostasis. The fate outcomes of sister cells are anticorrelated. We conclude a single cell population maintains squamous epithelial homeostasis.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3