A G1 sizer mechanism coordinates growth and division in the mouse epidermis

Author:

Xie ShicongORCID,Skotheim Jan M.ORCID

Abstract

SummaryCell size homeostasis is often achieved by coupling cell cycle progression to cell growth. Studies of cell size homeostasis in single-celled bacteria and yeast have observed several distinct phenomena. Growth can be coupled to division through a range of mechanisms, including a ‘sizer’, wherein cells of varying birth size divide at similar final sizes [1–3], and an ‘adder’, wherein cells increase in size a fixed amount per cell cycle [4–6]. Importantly, intermediate control mechanisms are observed, and even the same organism can exhibit distinct control phenomena depending on growth conditions [2,7,8]. While studying unicellular organisms in laboratory conditions may give insight into their growth control in the wild, this is less apparent for studies of mammalian cells growing outside the organism. Sizer, adder, and intermediate mechanisms have been observedin vitro[9–12], but it is unclear how these diverse size homeostasis phenomena relate to mammalian cell proliferationin vivo. To address this gap, we analyzed time-lapse images of the mouse epidermis taken over one week during normal tissue turnover [13]. We quantified the 3D volume growth and cell cycle progression of single cells within the mouse skin. In dividing epidermal stem cells, we found that cell growth is coupled to division through a sizer mechanism operating largely in the G1 phase. Thus, while the majority of tissue culture studies to-date identified adder mechanisms, our analysis demonstrates that sizer mechanisms are importantin vivoand highlights the need to determine their underlying molecular origin.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3