AI-driven Deep Visual Proteomics defines cell identity and heterogeneity

Author:

Mund AndreasORCID,Coscia FabianORCID,Hollandi Réka,Kovács Ferenc,Kriston András,Brunner Andreas-David,Bzorek Michael,Naimy Soraya,Rahbek Gjerdrum Lise Mette,Dyring-Andersen Beatrice,Bulkescher Jutta,Lukas Claudia,Gnann Christian,Lundberg Emma,Horvath Peter,Mann Matthias

Abstract

ABSTRACTThe systems-wide analysis of biomolecules in time and space is key to our understanding of cellular function and heterogeneity in health and disease1. Remarkable technological progress in microscopy and multi-omics technologies enable increasingly data-rich descriptions of tissue heterogeneity2,3,4,5. Single cell sequencing, in particular, now routinely allows the mapping of cell types and states uncovering tremendous complexity6. Yet, an unaddressed challenge is the development of a method that would directly connect the visual dimension with the molecular phenotype and in particular with the unbiased characterization of proteomes, a close proxy for cellular function. Here we introduce Deep Visual Proteomics (DVP), which combines advances in artificial intelligence (AI)-driven image analysis of cellular phenotypes with automated single cell laser microdissection and ultra-high sensitivity mass spectrometry7. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context. Individually excising nuclei from cell culture, we classified distinct cell states with proteomic profiles defined by known and novel proteins. AI also discovered rare cells with distinct morphology, whose potential function was revealed by proteomics. Applied to archival tissue of salivary gland carcinoma, our generic workflow characterized proteomic differences between normal-appearing and adjacent cancer cells, without admixture of background from unrelated cells or extracellular matrix. In melanoma, DVP revealed immune system and DNA replication related prognostic markers that appeared only in specific tumor regions. Thus, DVP provides unprecedented molecular insights into cell and disease biology while retaining spatial information.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3