One thousand samples per day capillary-flow LC/MS/MS for high-speed, high-sensitivity and in-depth proteomics

Author:

Tomioka Ayana,Tomioka Ryota,Mori Issei,Isobe YosukeORCID,Arita MakotoORCID,Imami KoshiORCID,Kanao Eisuke,Ogata KosukeORCID,Ishihama YasushiORCID

Abstract

AbstractWe developed a capillary-flow LC/MS/MS system with ultrahigh speed, enabling a throughput of 1,000 samples per day while maintaining high sensitivity and depth of analysis. In targeted LC/MS mode, 36 endogenous phosphopeptides in HeLa cells, including EphA2- derived phosphopeptide isomers, were successfully quantified with high selectivity and linearity by combining ion mobility separation. When 500 ng of HeLa cell digest was measured 100 times repeatedly in data-dependent acquisition mode, the coefficient of variation of retention time, peak intensity and number of identified peptides were on average 3.4%, 19.8%, and 6.0%, respectively. In data-independent acquisition mode, this system achieved the identification and quantification of 3,139 protein groups from a 100 ng HeLa cell digest and 2,145 protein groups from a sample of only 10 ng. The coefficient of variation of protein commonly quantified in the triplicate analysis ranged from 12 to 24% for HeLa digest samples ranging from 10 to 1000 ng. Finally, we applied this high-speed system to the spatial proteomics of the mouse brain, and succeeded in capturing the proteome distribution along a 96-sectioned brain structure in 135 minutes. This is the first LC/MS/MS system to achieve both more than 500 samples per day and more than 3000 identified protein groups ID with less than 100 ng human cultured cells simultaneously.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pathogenic mutations of human phosphorylation sites affect protein–protein interactions;Nature Communications;2024-04-11

2. Separation Science for Bottom-Up Proteomics;Journal of the Mass Spectrometry Society of Japan;2024-03-01

3. Exploiting ion‐mobility mass spectrometry for unraveling proteome complexity;Journal of Separation Science;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3