Amplicon sequencing of the 16S-ITS-23S rRNA operon with long-read technology for improved phylogenetic classification of uncultured prokaryotes

Author:

Martijn JoranORCID,Lind Anders E.,Spiers Ian,Juzokaite Lina,Bunikis Ignas,Vinnere Pettersson Olga,Ettema Thijs J.G

Abstract

AbstractAmplicon sequencing of the 16S rRNA gene is the predominant method to quantify microbial compositions of environmental samples and to discover previously unknown lineages. Its unique structure of interspersed conserved and variable regions is an excellent target for PCR and allows for classification of reads at all taxonomic levels. However, the relatively few phylogenetically informative sites prevent confident phylogenetic placements of novel lineages that are deep branching relative to reference taxa. This problem is exacerbated when only short 16S rRNA gene fragments are sequenced. To resolve their placement, it is common practice to gather more informative sites by combining multiple conserved genes into concatenated datasets. This however requires genomic data which may be obtained through relatively expensive metagenome sequencing and computationally demanding analyses. Here we develop a protocol that amplifies a large part of 16S and 23S rRNA genes within the rRNA operon, including the ITS region, and sequences the amplicons with PacBio long-read technology. We tested our method with a synthetic mock community and developed a read curation pipeline that reduces the overall error rate to 0.18%. Applying our method on four diverse environmental samples, we were able to capture near full-length rRNA operon amplicons from a large diversity of prokaryotes. Phylogenetic trees constructed with these sequences showed an increase in statistical support compared to trees inferred with shorter, Illumina-like sequences using only the 16S rRNA gene (250 bp). Our method is a cost-effective solution to generate high quality, near full-length 16S and 23S rRNA gene sequences from environmental prokaryotes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3