A global perspective on microbial diversity in the terrestrial deep subsurface

Author:

Soares A.,Edwards A.,An D.,Bagnoud A.,Bomberg M.,Budwill K.,Caffrey S. M.,Fields M.,Gralnick J.,Kadnikov V.,Momper L.,Osburn M.,Moreau J.W.,Moser D.,Mu A.,Purkamo L.,Rassner S. M.,Sheik C. S.,Sherwood Lollar B.,Toner B. M.,Voordouw G.,Wouters K.,Mitchell A. C.

Abstract

SummaryWhile recent efforts to catalogue Earth’s microbial diversity have focused upon surface and marine habitats, 12% to 20% of Earth’s bacterial and archaeal biomass is suggested to inhabit the terrestrial deep subsurface, compared to ∼1.8% in the deep subseafloor1–3. Metagenomic studies of the terrestrial deep subsurface have yielded a trove of divergent and functionally important microbiomes from a range of localities4–6. However, a wider perspective of microbial diversity and its relationship to environmental conditions within the terrestrial deep subsurface is still required. Here, we show the diversity of bacterial communities in deep subsurface groundwater is controlled by aquifer lithology globally, by using 16S rRNA gene datasets collected across five countries on two continents and from fifteen rock types over the past decade. Furthermore, our meta-analysis reveals that terrestrial deep subsurface microbiota are dominated by Betaproteobacteria, Gammaproteobacteria and Firmicutes, likely as a function of the diverse metabolic strategies of these taxa. Despite this similarity, evidence was found not only for aquifer-specific microbial communities, but also for a common small consortium of prevalent Betaproteobacteria and Gammaproteobacterial OTUs across the localities. This finding implies a core terrestrial deep subsurface community, irrespective of aquifer lithology, that may play an important role in colonising and sustaining microbial habitats in the deep terrestrial subsurface. Anin-silicocontamination-aware approach to analysing this dataset underscores the importance of downstream methods for assuring that robust conclusions can be reached from deep subsurface-derived sequencing data. Understanding the global panorama of microbial diversity and ecological dynamics in the deep terrestrial subsurface provides a first step towards understanding the role of microbes in global subsurface element and nutrient cycling.

Publisher

Cold Spring Harbor Laboratory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3