Long metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity

Author:

Jamy Mahwash,Foster Rachel,Barbera Pierre,Czech Lucas,Kozlov AlexeyORCID,Stamatakis Alexandros,Bass David,Burki Fabien

Abstract

AbstractHigh-throughput environmental DNA metabarcoding has revolutionized the analysis of microbial diversity, but this approach is generally restricted to amplicon sizes below 500 base pairs. These short regions contain limited phylogenetic signal, which makes it impractical to use environmental DNA in full phylogenetic inferences. However, new long-read sequencing technologies such as the Pacific Biosciences platform may provide sufficiently large sequence lengths to overcome the poor phylogenetic resolution of short amplicons. To test this idea, we amplified soil DNA and used PacBio Circular Consensus Sequencing (CCS) to obtain a ~4500 bp region of the eukaryotic rDNA operon spanning most of the small (18S) and large subunit (28S) ribosomal RNA genes. The CCS reads were first treated with a novel curation workflow that generated 650 high-quality OTUs containing the physically linked 18S and 28S regions of the long amplicons. In order to assign taxonomy to these OTUs, we developed a phylogeny-aware approach based on the 18S region that showed greater accuracy and sensitivity than similarity-based and phylogenetic placement-based methods using shorter reads. The taxonomically-annotated OTUs were then combined with available 18S and 28S reference sequences to infer a well-resolved phylogeny spanning all major groups of eukaryotes, allowing to accurately derive the evolutionary origin of environmental diversity. A total of 1019 sequences were included, of which a majority (58%) corresponded to the new long environmental CCS reads. Comparisons to the 18S-only region of our amplicons revealed that the combined 18S-28S genes globally increased the phylogenetic resolution, recovering specific groupings otherwise missing. The long-reads also allowed to directly investigate the relationships among environmental sequences themselves, which represents a key advantage over the placement of short reads on a reference phylogeny. Altogether, our results show that long amplicons can be treated in a full phylogenetic framework to provide greater taxonomic resolution and a robust evolutionary perspective to environmental DNA.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3