The temperature-dependent predatory strike of Odonata larvae

Author:

Koehnsen AlexanderORCID,Tröger Hannah-Lena,Gorb Stanislav NORCID,Büsse SebastianORCID

Abstract

AbstractThe larvae of Odonata are limnic predators capable of catching their prey using a highly modified mouthpart – the labium. Driven by a unique dual catapult mechanism, the apparatus can reach peak accelerations of up to 114.5m/s2. Yet little is known about the kinematics of the predatory strike in an ecological context. Here we show how different ambient temperatures affect the predatory strike and the avoidance reaction of prey items of Odonata larvae. We found that the extension velocity of the labial mask decreases significantly with the ambient temperature both in dragonflies and damselflies. However, temperature has lesser impact on the predatory strike itself than on directly muscle driven movements in both the predator and prey items. This contradicts the previous assumption that catapult mechanisms in insects are unaffected by temperature. Our results indicate that the prehensile labial mask is driven by a series-elastic catapult; a mechanism similar to the temperature dependent jump of frogs, where muscle and spring action are tightly linked. Our study provides novel insights into the predatory strike of Odonata larvae and offers a new ecological perspective on catapult mechanisms in arthropods in general.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3