Hunting with catapults: the predatory strike of the dragonfly larva

Author:

Büsse SebastianORCID,Koehnsen AlexanderORCID,Rajabi HamedORCID,Gorb Stanislav N.ORCID

Abstract

AbstractDragonfly larvae capture their prey with a strongly modified -extensible- mouthpart using a biomechanically unique but not yet understood mechanism. The current opinion of hydraulic pressure being the driving force of the predatory strike can be refuted by our manipulation experiments and reinterpretation of former studies. On this fact, we present evidence for a synchronized dual-catapult system powered by two spring-loaded catapults. The power output of the system exceeds generally the maximum power achievable by musculature. Energy for the movement is stored by straining a resilin-containing structure at each joint and possibly the surrounding cuticle which is preloaded by muscle contraction. To achieve the precise timing required to catch fast-moving prey, accessory structures are used to lock and actively trigger the system, ensuring the synchronisation of both catapults. As a proof of concept, we developed a bio-inspired robotic arm resembling the morphology and functional principle of the extensible mouthpart. Our study elucidates the predatory strike of dragonfly larvae by proposing a novel mechanism, where two synchronized catapults power the ballistic movement of prey capturing in dragonfly larvae – a so-called synchronized dual-catapult system. Understanding this complex biomechanical system may further our understanding in related fields of bio inspired robotics and biomimetics.One Sentence SummaryThe synchronized dual-catapult, a biomechanically novel mechanism for the ballistic movement of prey capturing in dragonfly larvae

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3