Author:
Hetrick Brian,He Sijia,Chilin Linda D.,Dabbagh Deemah,Alem Farhang,Narayanan Aarthi,Luchini Alessandra,Li Tuanjie,Liu Xuefeng,Copeland Joshua,Pak Angela,Cunningham Tshaka,Liotta Lance,Petricoin Emanuel F.,Andalibi Ali,Wu Yuntao
Abstract
SUMMARYTimely development of vaccines and antiviral drugs is critical to control the COVID-19 pandemic 1–6. Current methods for quantifying vaccine-induced neutralizing antibodies involve the use of pseudoviruses, such as the SARS-CoV-2 spike protein (S) pseudotyped lentivirus7–14. However, these pseudoviruses contain structural proteins foreign to SARS-CoV-2, and require days to infect and express reporter genes15. Here we describe the development of a new hybrid alphavirus-SARS-CoV-2 (Ha-CoV-2) particle for rapid and accurate quantification of neutralization antibodies and viral variants. Ha-CoV-2 is a non-replicating SARS-CoV-2 virus-like particle, composed of SARS-CoV-2 structural proteins (S, M, N, and E) and a RNA genome derived from a fast expressing alphavirus vector 16. We demonstrated that Ha-CoV-2 can rapidly and robustly express reporter genes in target cells within 3-6 hours. We further validated Ha-CoV-2 for rapid quantification of neutralization antibodies, viral variants, and antiviral drugs. In addition, as a proof-of-concept, we assembled and compared the relative infectivity of a panel of 10 Ha-CoV-2 variant isolates (D614G, P.1, B.1.1.207, B.1.351, B.1.1.7, B.1.429, B.1.258, B.1.494, B.1.2, B.1.1298), and demonstrated that these variants in general are 2-10 fold more infectious. Furthermore, we quantified the anti-serum from an infected and vaccinated individual; the one dose vaccination with Moderna mRNA-1273 has greatly increased the anti-serum titer for approximately 6 fold. The post-vaccination serum has also demonstrated various neutralizing activities against all 9 variants tested. These results demonstrated that Ha-CoV-2 can be used as a robust platform for rapid quantification of neutralizing antibodies against SARS-CoV-2 and its variants.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献