Programmable large DNA deletion, replacement, integration, and inversion with twin prime editing and site-specific recombinases

Author:

Anzalone Andrew V.,Gao Xin D.,Podracky Christopher J.,Nelson Andrew T.,Koblan Luke W.,Raguram Aditya,Levy Jonathan M.,Mercer Jaron A. M.,Liu David R.

Abstract

SummaryThe targeted deletion, replacement, integration, or inversion of DNA sequences at specified locations in the genome could be used to study or treat many human genetic diseases. Here, we describe twin prime editing (twinPE), a method for the programmable replacement or excision of DNA sequence at endogenous human genomic sites without requiring double-strand DNA breaks. TwinPE uses a prime editor (PE) protein and two prime editing guide RNAs (pegRNAs) that template the synthesis of complementary DNA flaps on opposing strands of genomic DNA, resulting in the replacement of endogenous DNA sequence between the PE-induced nick sites with pegRNA-encoded sequences. We show that twinPE in human cells can perform precise deletions of at least 780 bp and precise replacements of genomic DNA sequence with new sequences of at least 108 bp. By combining single or multiplexed twinPE with site-specific serine recombinases either in separate steps or in a single step, we demonstrate targeted integration of gene-sized DNA plasmids (>5,000 bp) into safe-harbor loci including AAVS1, CCR5, and ALB in human cells. To our knowledge, these results represent the first RNA-programmable insertion of gene-sized DNA sequences into targeted genomic sites of unmodified human cells without requiring double-strand breaks or homology-directed repair. Twin PE combined with recombinases also mediated a 40,167-bp inversion at IDS that corrects a common Hunter syndrome allele. TwinPE expands the capabilities of precision gene editing without requiring double-strand DNA breaks and synergizes with other tools to enable the correction or complementation of large or complex pathogenic alleles in human cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3