Abstract
ABSTRACTAutophagy, a cellular degradation pathway, and the phytohormone ethylene function in plant development, senescence, and stress responses. However, the manner of their interaction is mostly unknown. We reasoned that this may be revealed by studying autophagy in a climacteric fruit ripening context, for which ethylene is crucial. During ripening, fruits undergo softening, color change, toxic compound degradation, volatile production, and sugar assembly by fine-tuning synthesis and degradation of their cellular content. For autophagy activity assessment, we analyzed autophagy-related 8 (ATG8) lipidation and GFP-ATG8-labeled autophagosome flux in tomato fruit cells. Autophagy activity increased sharply from ripening initiation, climaxed at its middle stage, and declined towards its end, resembling ethylene production dynamics. Silencing the core-autophagy genesSlATG2,SlATG7, andSlATG4separately in mature fruits resulted in early ethylene production and ripening onset, which was abrogated by 1-methylcyclopropene (1-MCP), an ethylene signaling inhibitor. Beyond ripening, Arabidopsisatg5andatg7mutant seedlings exhibited elevated ethylene production and sensitivity to 1-Aminocyclopropane 1-carboxylic acid (ACC), ethylenès precursor, which induces autophagy. This research demonstrates that autophagy limits tomato fruit ripening via a general role in ethylene restriction, opening the path for a mechanistic understanding of autophagy-ethylene crosstalk and harnessing autophagy for fruit shelf-life extension.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献