Sequential Optimal Experimental Design of Perturbation Screens Guided by Multi-modal Priors

Author:

Huang Kexin,Lopez Romain,Hütter Jan-Christian,Kudo Takamasa,Rios Antonio,Regev Aviv

Abstract

AbstractUnderstanding a cell’s expression response to genetic perturbations helps to address important challenges in biology and medicine, including the function of gene circuits, discovery of therapeutic targets and cell reprogramming and engineering. In recent years, Perturb-seq, pooled genetic screens with single cell RNA-seq (scRNA-seq) readouts, has emerged as a common method to collect such data. However, irrespective of technological advances, because combinations of gene perturbations can have unpredictable, non-additive effects, the number of experimental configurations far exceeds experimental capacity, and for certain cases, the number of available cells. While recent machine learning models, trained on existing Perturb-seq data sets, can predict perturbation outcomes with some degree of accuracy, they are currently limited by sub-optimal training set selection and the small number of cell contexts of training data, leading to poor predictions for unexplored parts of perturbation space. As biologists deploy Perturb-seq across diverse biological systems, there is an enormous need for algorithms to guide iterative experiments while exploring the large space of possible perturbations and their combinations. Here, we propose a sequential approach for designing Perturb-seq experiments that uses the model to strategically select the most informative perturbations at each step for subsequent experiments. This enables a significantly more efficient exploration of the perturbation space, while predicting the effect of the rest of the unseen perturbations with high-fidelity. Analysis of a previous large-scale Perturb-seq experiment reveals that our setting is severely restricted by the number of examples and rounds, falling into a non-conventional active learning regime called “active learning on a budget”. Motivated by this insight, we develop IterPert, a novel active learning method that exploits rich and multi-modal prior knowledge in order to efficiently guide the selection of subsequent perturbations. Using prior knowledge for this task is novel, and crucial for successful active learning on a budget. We validate IterPertusing insilico benchmarking of active learning, constructed from a large-scale CRISPRi Perturb-seq data set. We find that IterPertoutperforms other active learning strategies by reaching comparable accuracy at only a third of the number of perturbations profiled as the next best method. Overall, our results demonstrate the potential of sequentially designing perturbation screens through IterPert.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3