An Interpretable Framework to Characterize Compound Treatments on Filamentous Fungi using Cell Painting and Deep Metric Learning

Author:

Lejeune Laurent,Roussin Morgane,Leggio Bruno,Vernay Aurelia

Abstract

AbstractThe cell painting microscopy imaging protocol has recently gained traction in the biology community as it allows, through the addition of fluorescent dyes, to acquire images that highlight intra-cellular components that are not visible through traditional whole-cell microscopy. While previous works have successfully applied cell painting to mammalian cells, we devise a staining protocol applicable to a filamentous fungus model. Following a principled visual inspection and annotation protocol of phenotypes by domain-experts, we devise an efficient, robust, and conceptually simple image analysis strategy based on the Deep Cosine Metric Learning paradigm that allows to estimate phenotypical similarities across different imaging modalities. We experimentally demonstrate the benefits of our pipeline in the tasks of estimating dose-response curves over a wide range of subtle phenotypical variations. Last, we showcase how our learned metrics can group image samples according to different modes of action and biological targets in an interpretable manner.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3