Abstract
AbstractTrans-homolog interactions encompass potent regulatory functions, which have been studied extensively in Drosophila, where homologs are paired in somatic cells and pairing-dependent gene regulation, or transvection, is well-documented. Nevertheless, the structure of pairing and whether its functional impact is genome-wide have eluded analysis. Accordingly, we generated a diploid cell line from divergent parents and applied haplotype-resolved Hi-C, discovering that homologs pair relatively precisely genome-wide in addition to establishing trans-homolog domains and compartments. We also elucidated the structure of pairing with unprecedented detail, documenting significant variation across the genome. In particular, we characterized two forms: tight pairing, consisting of contiguous small domains, and loose pairing, consisting of single larger domains. Strikingly, active genomic regions (A-type compartments, active chromatin, expressed genes) correlated with tight pairing, suggesting that pairing has a functional role genome-wide. Finally, using RNAi and haplotype-resolved Hi-C, we show that disruption of pairing-promoting factors results in global changes in pairing.One Sentence SummaryHaplotype-resolved Hi-C reveals structures of homolog pairing and global implications for gene activity in hybrid PnM cells.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献