TADs pair homologous chromosomes to promote interchromosomal gene regulation

Author:

Viets Kayla,Sauria Michael,Chernoff Chaim,Anderson Caitlin,Tran Sang,Dove Abigail,Goyal Raghav,Voortman Lukas,Gordus Andrew,Taylor James,Johnston Robert J.ORCID

Abstract

AbstractHomologous chromosomes colocalize to regulate gene expression in processes including genomic imprinting and X-inactivation, but the mechanisms driving these interactions are poorly understood. In Drosophila, homologous chromosomes pair throughout development, promoting an interchromosomal gene regulatory mechanism called transvection. Despite over a century of study, the molecular features that facilitate chromosome-wide pairing are unknown. The “button” model of pairing proposes that specific regions along chromosomes pair with a higher affinity than their surrounding regions, but only a handful of DNA elements that drive homologous pairing between chromosomes have been described. Here, we identify button loci interspersed across the fly genome that have the ability to pair with their homologous sequences. Buttons are characterized by topologically associated domains (TADs), which drive pairing with their endogenous loci from multiple locations in the genome. Fragments of TADs do not pair, suggesting a model in which combinations of elements interspersed along the full length of a TAD are required for pairing. Though DNA-binding insulator proteins are not associated with pairing, buttons are enriched for insulator cofactors, suggesting that these proteins may mediate higher order interactions between homologous TADs. Using a TAD spanning the spinelessd gene as a paradigm, we find that pairing is necessary but not sufficient for transvection. spineless pairing and transvection are cell-type-specific, suggesting that local buttoning and unbuttoning regulates transvection efficiency between cell types. Together, our data support a model in which specialized TADs button homologous chromosomes together to facilitate cell-type-specific interchromosomal gene regulation.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3