Distinguishing genetic correlation from causation across 52 diseases and complex traits

Author:

O’Connor Luke J.,Price Alkes L.

Abstract

AbstractMendelian randomization (MR) is widely used to identify causal relationships among heritable traits, but it can be confounded by genetic correlations reflecting shared etiology. We propose a model in which a latent causal variable mediates the genetic correlation between two traits. Under the latent causal variable (LCV) model, trait 1 is fully genetically causal for trait 2 if it is perfectly genetically correlated with the latent causal variable, implying that the entire genetic component of trait 1 is causal for trait 2; it is partially genetically causal for trait 2 if it has a high genetic correlation with the latent variable, implying that part of the genetic component of trait 1 is causal for trait 2. To quantify the degree of partial genetic causality, we define the genetic causality proportion (gcp). We fit this model using mixed fourth moments E(α1α2) and E(α1α2) of marginal effect sizes for each trait, exploiting the fact that if trait 1 is causal for trait 2 then SNPs affecting trait 1 (large ) will have correlated effects on trait 2 (large α1α2), but not vice versa. We performed simulations under a wide range of genetic architectures and determined that LCV, unlike state-of-the-art MR methods, produced well-calibrated false positive rates and reliable gcp estimates in the presence of genetic correlations and asymmetric genetic architectures; we also determined that LCV is well-powered to detect a causal effect. We applied LCV to GWAS summary statistics for 52 traits (average N=331k), identifying partially or fully genetically causal effects (1% FDR) for 59 pairs of traits, including 30 pairs of traits with high gcp estimates (gĉp > 0.6). Results consistent with the published literature included genetically causal effects on myocardial infarction (MI) for LDL, triglycerides and BMI. Novel findings included a genetically causal effect of LDL on bone mineral density, consistent with clinical trials of statins in osteoporosis. These results demonstrate that it is possible to distinguish between genetic correlation and causation using genetic data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3