MR-APSS: a unified approach to Mendelian Randomization accounting for pleiotropy and sample structure using genome-wide summary statistics

Author:

Hu Xianghong,Zhao Jia,Lin Zhixiang,Wang Yang,Peng Heng,Zhao Hongyu,Wan Xiang,Yang Can

Abstract

AbstractMendelian Randomization (MR) has proved to be a powerful tool for inferring causal relationships among a wide range of traits using GWAS summary statistics. Great efforts have been made to relax MR assumptions to account for confounding due to pleiotropy. Here we show that sample structure is another major confounding factor, including population stratification, cryptic relatedness, and sample overlap. We propose a unified MR approach, MR-APSS, to account for pleiotropy and sample structure simultaneously by leveraging genome-wide information. By further correcting bias in selecting genetic instruments, MR-APSS allows to include more genetic instruments with moderate effects to improve statistical power without inflating type I errors. We first evaluated MR-APSS using comprehensive simulations and negative controls, and then applied MR-APSS to study the causal relationships among a collection of diverse complex traits. The results suggest that MR-APSS can better identify plausible causal relationships with high reliability, in particular for highly polygenic traits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3