Next generation SARM1 knockout and epitope tagged CRISPR-Cas9-generated isogenic mice reveal that SARM1 does not participate in regulating nuclear transcription, despite confirmation of protein expression in macrophages

Author:

Doran Ciara G.,Sugisawa Ryoichi,Carty Michael,Roche Fiona,Fergus Claire,Hokamp Karsten,Kelly Vincent P.,Bowie Andrew GORCID

Abstract

ABSTRACTSARM1 is an ancient and highly conserved TIR-domain containing protein, with a diverse range of proposed roles in both innate immunity and neuronal death and degeneration. Murine SARM1 has been reported to regulate the transcription of specific chemokines in both neurons and macrophages, however the extent and mechanism by which SARM1 contributes to transcription regulation remains to be fully understood. Here, using RNA sequencing we identify differential gene expression in bone marrow-derived macrophages (BMDM) from C57BL/6 congenic 129 ES cell-derived Sarm1-/- mice compared to wild type (WT). However, we show that passenger genes which are derived from the 129 donor strain of mice flank the Sarm1 locus, confounding interpretation of results, since many of the identified differentially regulated genes come from the region containing passenger genes. To re-examine the transcriptional role of SARM1 in the absence of such passenger genes, we generated three different Sarm1-/- mice using CRISPR/Cas9 technology. Vincristine treatment of ex vivo cultured post-natal neurons from these mice confirmed SARM1’s previously identified key function as an executor of axon degeneration. However, using these mice, we show that the absence of SARM1 has no impact on transcription of genes previously shown to be altered in macrophages or in the brainstem. To gain further insight into SARM1 function, we generated and characterized a mouse expressing epitope-tagged SARM1, as it has been difficult to date to confirm which cells and tissues express SARM1 protein. In these mice we see high SARM1 protein expression in the brain and brainstem, and lower but detectable levels in macrophages. Overall, the generation of these next generation SARM1 knockout and epitope-tagged mice has clarified that SARM1 is expressed in mouse macrophages but has no general role in transcriptional regulation in these cells, and has provided important new animal models to further explore SARM1 function.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3