Succession of Bifidobacterium longum strains in response to the changing early-life nutritional environment reveals specific adaptations to distinct dietary substrates

Author:

Kujawska Magdalena,La Rosa Sabina Leanti,Pope Phillip B.,Hoyles Lesley,McCartney Anne L.,Hall Lindsay JORCID

Abstract

AbstractDiet-microbe interactions play a crucial role in infant development and modulation of the early-life microbiota. The genus Bifidobacterium dominates the breast-fed infant gut, with strains of B. longum subsp. longum (B. longum) and B. longum subsp. infantis (B. infantis) particularly prevalent. Although transition from milk to a more diversified diet later in infancy initiates a shift to a more complex microbiome, specific strains of B. longum may persist in individual hosts for prolonged periods of time. Here, we sought to investigate the adaptation of B. longum to the changing infant diet. Genomic characterisation of 75 strains isolated from nine either exclusively breast- or formula-fed (pre-weaning) infants in their first 18 months revealed subspecies- and strain-specific intra-individual genomic diversity with respect to glycosyl hydrolase families and enzymes, which corresponded to different dietary stages. Complementary phenotypic growth studies indicated strain-specific differences in human milk oligosaccharide and plant carbohydrate utilisation profiles of isolates between and within individual infants, while proteomic profiling identified active polysaccharide utilisation loci involved in metabolism of selected carbohydrates. Our results indicate a strong link between infant diet and B. longum subspecies/strain genomic and carbohydrate utilisation diversity, which aligns with a changing nutritional environment: i.e. moving from breast milk to a solid food diet. These data provide additional insights into possible mechanisms responsible for the competitive advantage of this Bifidobacterium species and its long-term persistence in a single host and may contribute to rational development of new dietary therapies for this important developmental window.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3