Mechanics regulate human embryonic stem cell self-organization to specify mesoderm

Author:

Muncie Jonathon M.ORCID,Ayad Nadia M.E.ORCID,Lakins Johnathon N.,Weaver Valerie M.ORCID

Abstract

AbstractEmbryogenesis is directed by morphogens that induce differentiation within a defined tissue geometry. Tissue organization is mediated by cell-cell and cell-extracellular matrix (ECM) adhesions and is modulated by cell tension and tissue-level force. Whether cell tension regulates development by directly influencing morphogen signaling remains unclear. Human embryonic stem cells (hESCs) exhibit an intrinsic capacity for self-organization that motivates their use as a tractable model of early human embryogenesis. We engineered patterned substrates that enhance cell-cell interactions to direct the self-organization of cultured hESCs into “gastrulation-like” nodes. Tissue geometries that generate local nodes of high cell-cell tension and induce these self-organized tissue nodes drive BMP4-dependent gastrulation by enhancing phosphorylation and nuclear translocation of β-catenin to promote Wnt signaling and mesoderm specification. The findings underscore the interplay between tissue organization, cell tension, and morphogen-dependent differentiation, and demonstrate that cell- and tissue-level forces directly regulate cell fate specification in early human development.Graphical AbstractHighlightsSubstrates that enhance cell-cell adhesion promote hESC self-organizationTissue nodes exhibiting high tension are predisposed to gastrulation inductionColony geometry dictates the localization of tension nodes to specify mesodermTension activates β-catenin and stimulates Wnt signaling to induce mesodermIn BriefEngineered substrates that promote cell-cell adhesion and reconstitute epiblast tissue organization facilitate “gastrulation-like” morphogenesis in cultured hESCs. Tissue geometries that foster localized regions of high cell-cell tension potentiate BMP4-dependent mesoderm specification by enhancing phosphorylation and nuclear translocation of β-catenin to promote Wnt signaling.

Publisher

Cold Spring Harbor Laboratory

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3