Chemomechanically voxelated niches for programmable histogenesis

Author:

Newman Peter L. H.ORCID,Osteil PierreORCID,Anderson Tim A.,Sun Jane Q. J.,Kempe Daryan,Biro MatéORCID,Shin Jae-WonORCID,Tam Patrick P.L.ORCID,Zreiqat HalaORCID

Abstract

Tissue and organoid models have been established with increasingly physiological shape, size, and function1–3. However, histogenesis proceeds stochastically within these models, relying on ‘self-organization’ mechanisms that limit their ability to form recapitulative organotypic structures with controlled architecture and composition. To address this, we develop a printing technology to program histogenesis using material-guided instructive cues. We print voxelated niche microenvironments with independently tunable chemical and mechanical microproperties, or ‘chemomechanics’. This includes the voxelization of conjugated peptides, proteins, and morphogens across a range of Young’s Moduli. We show that these niches are capable of the cellular-scale programming of functions that underpin histogenesis, including mechanosensing and the differentiation of selective cell types. By rationally designing these niches with specific voxelated properties, we can program histogenesis and generate spatially reproducible tissues from a single cell-source. These tissues include a bone-fat-osteoid from stromal mesenchyme and a polarized assembly of germ-layer tissues derived from pluripotent stem cells. While programming germ-layer tissues, we reveal that polarized matrix mechanics can direct human germ-layer histogenesis in a model of tissue development. Thus, chemomechanically voxelated niches are a valuable tool to program and structure cellular-scale behaviors into well-defined tissues. Their continued study potentiates a better understanding of how extrinsic niche factors regulate histogenesis, and their application enhances capabilities for generating tissues and organ systems with a well-defined composition and architecture.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3