Abstract
Summary/AbstractIn embryonic development, symmetry breaking events and the mechanical milieus in which they occur coordinate the specification of separate cell lineages. Here, we use 3D aggregates of human pluripotent stem cells (hPSCs) encapsulated in alginate microbeads to model the early blastocyst prior to zona pellucida hatching. We demonstrate that 3D confinement combined with modulation of cell-cell adhesions is sufficient to drive differentiation and collective migration reminiscent of the pre-implantation embryo. Knockdown of the cell adhesion protein CDH1 in encapsulated hPSC aggregates resulted in protrusion morphologies and emergence of extra-embryonic lineages, whereas unencapsulated CDH1(-) aggregates displayed organized radial delamination and mesendoderm specification bias. Transcriptomic similarities between single-cell RNA-sequencing data of early human embryos and encapsulated CDH1(-) aggregates establishes this in vitro system as a competent surrogate for studying early embryonic fate decisions and highlights the relationship between cell-cell adhesions and the mechanical microenvironment in directing cell fate and behavior.HighlightsGeneration of embryonic scale 3D morphogenesis using hydrogel encapsulationManipulating adhesion triggers emergence of specific morphologies and cell fatesAcquisition of germ layer cell fates mimics early human embryonic diversity
Publisher
Cold Spring Harbor Laboratory