Comparative genomics and integrated system biology approach unveiled undirected phylogeny patterns, mutational hot spots, functional patterns and molecule repurposing for monkey pox virus

Author:

Singhvi Nirjara,Talwar Chandni,Mahanta Utkarsha,Kaur Jasvinder,Mondal Krishnendu,Ahmad Nabeel,Singh Inderjeet,Sharma Gaurav,Gupta Vipin

Abstract

AbstractMonkeypox is a viral zoonosis with symptoms that are reminiscent to those experienced in previous smallpox cases. GSAID databases (Global Initiative on Sharing Avian Influenza Data) was used to assess 630 genomes of MPXV. Six primary clades were inferred from the phylogenetic study, coupled with a lesser percentage in radiating clades. Individual clades that make up various nationalities may have formed as a result of a particular SNP hotspot type, which may have mutated in a particular population type.The most significant mutation, based on a mutational hotspot analysis, was found at G3729A and G5143A. The gene ORF138, which encodes the Ankyrin repeat (ANK) protein, was found to have the most mutations. This protein is known to mediate molecular recognition via protein-protein interactions. It was shown that 243 host proteins interacted with 10 monkeypox proteins identified as the hub proteins E3, SPI2, C5, K7, E8, G6, N2, B14, CRMB, and A41 through 262 direct connections. The interaction with chemokine system-related proteins provides further evidence that the human protein is being suppressed by the monkey pox virus in order to facilitate its survival against innate immunity.A few FDA-approved molecules were likely used as possible inhibitors after being researched for blocking F13, a significant envelope protein on the membrane of extracellular versions of virus. A total of 2500 putative ligands were docked individually with the F13 protein. The F13 protein and these molecules’ interaction may help prevent the monkey pox virus from spreading. As a result, after being confirmed by experiments, these putative inhibitors might have an impact on the activity of these proteins and be utilised in monkeypox treatments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3