The Impact of Freeze-Thaw Cycles on the Integrity of SARS-COV-2 Viral Culture Fluids and Clinical Remnant Samples in Antigen or Nucleic Acid Testing

Author:

Hussain Hajirah Noor,Weeks Hali,Zhou Derek,Joseph Divya,Lam Brooke,Xu Haidong,Zhang Chushi,Gregg Keqin,Zhou Wenli

Abstract

AbstractPreservation at ultra-low temperatures has been a gold standardfor long-term storage of many types of clinical specimens including the SARS-CoV-2 virus. The frozen specimens can be easily transported and tested later. In addition, de-identified frozen remnant samples are resources for many preclinical or clinical studies. It is therefore crucial to understand whether freeze and thaw cycles (FTCs) can adversely affect SARS-CoV-2 test performance when frozen samples are tested. Some early studies suggest that the FTCs increased the cycles threshold (Ct) of RT-PCR indicating the potential degradation of the SARS-CoV-2 nucleic acid after FTCs, while the others did not report any significant changes in the SARS-CoV-2 nucleic acids after the FTCs. Moreover, the impact of FTCs on the performance of the SARS-CoV-2 antigen test is scarcely reported.In this study, we performed paired nucleic acid and rapid antigen testson the same samples to investigate and directly compare how FTCs affect the performance of two types of tests. Both inactivated viral culture fluid samples and clinical remnant samples were studied. Our results showed that FTCs had minimal negative effects on the performance of the rapid SARS-CoV-2 antigen test, and the test results remained largely consistent throughout the FTCs, whereas the Ct values of RT-PCR increased with the increase of the FTC numbers. In addition, our data also demonstrated that the SARS-CoV-2 is preserved better in VTM than PBS during FTCs in regard to nucleic acid testing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3