Mean Dimension of Generative Models for Protein Sequences

Author:

Feinauer Christoph,Borgonovo Emanuele

Abstract

AbstractGenerative models for protein sequences are important for protein design, mutational effect prediction and structure prediction. In all of these tasks, the introduction of models which include interactions between pairs of positions has had a major impact over the last decade. More recently, many methods going beyond pairwise models have been developed, for example by using neural networks that are in principle able to capture interactions between more than two positions from multiple sequence alignments. However, not much is known about the inter-dependency patterns between positions in these models, and how important higher-order interactions involving more than two positions are for their performance. In this work, we introduce the notion of mean dimension for generative models for protein sequences, which measures the average number of positions involved in interactions when weighted by their contribution to the total variance in log probability of the model. We estimate the mean dimension for different model classes trained on different protein families, relate it to the performance of the models on mutational effect prediction tasks and also trace its evolution during training. The mean dimension is related to the performance of models in biological prediction tasks and can highlight differences between model classes even if their performance in the prediction task is similar. The overall low mean dimension indicates that well-performing models are not necessarily of high complexity and encourages further work in interpreting their performance in biological terms.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3