An evolution-based model for designing chorismate mutase enzymes

Author:

Russ William P.1ORCID,Figliuzzi Matteo2ORCID,Stocker Christian3ORCID,Barrat-Charlaix Pierre24,Socolich Michael5,Kast Peter3ORCID,Hilvert Donald3ORCID,Monasson Remi6ORCID,Cocco Simona6ORCID,Weigt Martin2ORCID,Ranganathan Rama5ORCID

Affiliation:

1. University of Texas Southwestern Medical Center, Dallas, TX, USA.

2. Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie Computationnelle and Quantitative, Paris, France.

3. Laboratory of Organic Chemistry, ETH Zurich, Switzerland.

4. Biozentrum, University of Basel, Basel, Switzerland.

5. Center for Physics of Evolving Systems, Biochemistry and Molecular Biology and the Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA.

6. Laboratoire de Physique de l’Ecole Normale Supérieure, PSL and CNRS, Paris, France.

Abstract

The rational design of enzymes is an important goal for both fundamental and practical reasons. Here, we describe a process to learn the constraints for specifying proteins purely from evolutionary sequence data, design and build libraries of synthetic genes, and test them for activity in vivo using a quantitative complementation assay. For chorismate mutase, a key enzyme in the biosynthesis of aromatic amino acids, we demonstrate the design of natural-like catalytic function with substantial sequence diversity. Further optimization focuses the generative model toward function in a specific genomic context. The data show that sequence-based statistical models suffice to specify proteins and provide access to an enormous space of functional sequences. This result provides a foundation for a general process for evolution-based design of artificial proteins.

Funder

National Institutes of Health

Welch Foundation

European Commission Directorate-General for Research and Innovation

Agence Nationale de la Recherche

Swiss National Science Foundation

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 219 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3