Author:
Feinauer Christoph,Weigt Martin
Abstract
AbstractAmino-acid substitutions are implicated in a wide range of human diseases, many of which are lethal. Distinguishing such mutations from polymorphisms without significant effect on human health is a necessary step in understanding the etiology of such diseases. Computational methods can be used to select interesting mutations within a larger set, to corroborate experimental findings and to elucidate the cause of the deleterious effect. In this work, we show that taking into account the sequence context in which the mutation appears allows to improve the predictive and explanatory power of such methods. We present an unsupervised approach based on the direct-coupling analysis of homologous proteins. We show its capability to quantify mutations where methods without context dependence fail. We highlight cases where the context dependence is interpretable as functional or structural constraints and show that our simple and unsupervised method has an accuracy similar to state-of-the-art methods, including supervised ones.
Publisher
Cold Spring Harbor Laboratory
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献