Correspondence between the layered structure of deep language models and temporal structure of natural language processing in the human brain

Author:

Goldstein Ariel,Ham Eric,Nastase Samuel A.,Zada Zaid,Grinstein-Dabus Avigail,Aubrey Bobbi,Schain Mariano,Gazula Harshvardhan,Feder Amir,Doyle Werner,Devore Sasha,Dugan Patricia,Friedman Daniel,Brenner Michael,Hassidim Avinatan,Devinsky Orrin,Flinker Adeen,Levy Omer,Hasson Uri

Abstract

AbstractDeep language models (DLMs) provide a novel computational paradigm for how the brain processes natural language. Unlike symbolic, rule-based models described in psycholinguistics, DLMs encode words and their context as continuous numerical vectors. These “embeddings” are constructed by a sequence of computations organized in “layers” to ultimately capture surprisingly sophisticated representations of linguistic structures. How does this layered hierarchy map onto the human brain during natural language comprehension? In this study, we used electrocorticography (ECoG) to record neural activity in language areas along the superior temporal gyrus and inferior frontal gyrus while human participants listened to a 30-minute spoken narrative. We supplied this same narrative to a high-performing DLM (GPT2-XL) and extracted the contextual embeddings for each word in the story across all 48 layers of the model. We next trained a set of linear encoding models to predict the temporally-evolving neural activity from the embeddings at each layer. We found a striking correspondence between the layer-by-layer sequence of embeddings from GPT2-XL and the temporal sequence of neural activity in language areas. In addition, we found evidence for the gradual accumulation of recurrent information along the linguistic processing hierarchy. However, we also noticed additional neural processes in the brain, but not in DLMs, during the processing of surprising (unpredictable) words. These findings point to a connection between human language processing and DLMs where the layer-by-layer accumulation of contextual information in DLM embeddings matches the temporal dynamics of neural activity in high-order language areas.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3