Representations and generalization in artificial and brain neural networks

Author:

Li Qianyi12ORCID,Sorscher Ben3ORCID,Sompolinsky Haim24

Affiliation:

1. The Harvard Biophysics Graduate Program, Harvard University, Cambridge, MA 02138

2. Center for Brain Science, Harvard University, Cambridge, MA 02138

3. The Applied Physics Department, Stanford University, Stanford, CA 94305

4. Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 9190401, Israel

Abstract

Humans and animals excel at generalizing from limited data, a capability yet to be fully replicated in artificial intelligence. This perspective investigates generalization in biological and artificial deep neural networks (DNNs), in both in-distribution and out-of-distribution contexts. We introduce two hypotheses: First, the geometric properties of the neural manifolds associated with discrete cognitive entities, such as objects, words, and concepts, are powerful order parameters. They link the neural substrate to the generalization capabilities and provide a unified methodology bridging gaps between neuroscience, machine learning, and cognitive science. We overview recent progress in studying the geometry of neural manifolds, particularly in visual object recognition, and discuss theories connecting manifold dimension and radius to generalization capacity. Second, we suggest that the theory of learning in wide DNNs, especially in the thermodynamic limit, provides mechanistic insights into the learning processes generating desired neural representational geometries and generalization. This includes the role of weight norm regularization, network architecture, and hyper-parameters. We will explore recent advances in this theory and ongoing challenges. We also discuss the dynamics of learning and its relevance to the issue of representational drift in the brain.

Funder

DOD | USN | Office of Naval Research

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning meets physics: A two-way street;Proceedings of the National Academy of Sciences;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3