Shared computational principles for language processing in humans and deep language models

Author:

Goldstein ArielORCID,Zada ZaidORCID,Buchnik Eliav,Schain Mariano,Price AmyORCID,Aubrey Bobbi,Nastase Samuel A.ORCID,Feder Amir,Emanuel Dotan,Cohen Alon,Jansen Aren,Gazula Harshvardhan,Choe Gina,Rao Aditi,Kim Catherine,Casto Colton,Fanda LoraORCID,Doyle Werner,Friedman Daniel,Dugan Patricia,Melloni LuciaORCID,Reichart Roi,Devore Sasha,Flinker Adeen,Hasenfratz Liat,Levy OmerORCID,Hassidim Avinatan,Brenner Michael,Matias Yossi,Norman Kenneth A.ORCID,Devinsky Orrin,Hasson UriORCID

Abstract

AbstractDeparting from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language.

Publisher

Springer Science and Business Media LLC

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3