Allele-specific knockouts reveal a role for apontic-like in the evolutionary loss of larval pigmentation in the domesticated silkworm, Bombyx mori

Author:

Tomihara KentaORCID,Andolfatto PeterORCID,Kiuchi TakashiORCID

Abstract

AbstractThe domesticated silkworm, Bombyx mori, and its wild progenitor, B. mandarina, are extensively studied as a model case of the evolutionary process of domestication. A conspicuous difference between these species is the dramatic reduction in pigmentation in both larval and adult B. mori. Here we evaluate the efficiency of CRISPR/Cas9-targeted knockouts of pigment-related genes as a tool to understand their potential contributions to domestication-associated pigmentation loss in B. mori. To demonstrate the efficacy of targeted knockouts in B. mandarina, we generated a homozygous CRISPR/Cas9-targeted knockout of yellow-y. In yellow-y knockout mutants, black body color became lighter throughout the larval, pupal and adult stages, confirming a role for this gene in pigment formation. Further, we performed allele-specific CRISPR/Cas9-targeted knockouts of the pigment-related transcription factor, apontic-like (apt-like) in B. mori × B. mandarina F1 hybrid individuals. Knockout of the B. mandarina allele of apt-like in F1 embryos results in depigmented patches on the dorsal integument of larvae, whereas corresponding knockouts of the B. mori allele consistently exhibit normal F1 larval pigmentation. These results demonstrate a contribution of apt-like to the evolution of reduced pigmentation in B. mori. Together, our results demonstrate the feasibility of CRISPR/Cas9-targeted knockouts as a tool for understanding the genetic basis of traits associated with B. mori domestication.Brief abstractBombyx mori and its wild progenitor are an important model for the study of phenotypic evolution associated with domestication. As proof-of-principle, we used CRISPR/Cas9 to generate targeted knockouts of two pigmentation-related genes. By generating a homozygous knockout of yellow-y in B. mandarina, we confirmed this gene”s role in pigment formation. Further, by generating allele-specific knockouts of apontic-like (apt-like) in B. mori × B. mandarina F1 hybrids, we establish that evolution of apt-like contributed to reduced pigmentation during B. mori domestication.Graphical TOC/Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3