Electron transfer proteins in gut bacteria yield metabolites that circulate in the host

Author:

Liu Yuanyuan,Chen Haoqing,Van Treuren William,Hou Bi-Huei,Higginbottom Steven K.,Sonnenburg Justin L.,Dodd DylanORCID

Abstract

It has long been known that proteolytic Clostridia obtain their energy by coupling oxidative and reductive pathways for amino acid metabolism – the Stickland reaction1. The oxidation of one amino acid is coupled with reduction of another, yielding energy in the former step and re-achieving redox balance with the latter. Here, we find that the gut bacterium, Clostridium sporogenes metabolizes amino acids through reductive pathways to produce metabolites that circulate within the host. Measurements in vitro indicate that reductive Stickland pathways are coupled to ATP formation, revealing their role in energy capture by gut bacteria. By probing the genetics of C. sporogenes, we find that the Rnf complex is involved in reductive amino acid metabolism. Rnf complex mutants are attenuated for growth in the mouse gut, demonstrating the importance of energy capture during reductive metabolism for gut colonization. Our findings reveal that the production of high-abundance molecules by a commensal bacterium within the host gut is linked to an energy yielding redox process.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3