Identification of a new antiphage system inMycobacteriumphage Butters

Author:

Mohammed Hamidu T.,Mageeney Catherine,Ware Vassie C.ORCID

Abstract

ABSTRACTDuring lysogeny temperate phages establish a truce with the bacterial host. In this state, the phage genome (prophage) is maintained within the host environment. Consequently, many prophages have evolved systems to protect the host from heterotypic viral attack. This phenomenon of prophages mediating defense of their host against competitor phages is widespread among temperate mycobacteriophages. We previously showed that theMycobacteriumphage Butters prophage encodes a two-component system (gp30/31) that inhibits infection from a subset of mycobacteriophages that include PurpleHaze, but not Island3. Here we show that Butters gp57r is both necessary and sufficient to inhibit infection by Island3 and other phages. Gp57r acts post-DNA injection and its antagonism results in the impairment of Island3 DNA amplification. Gp57r inhibition of Island3 is absolute with no defense escape mutants. However, mutations mapping to minor tail proteins allow PurpleHaze to overcome gp57r defense. Gp57r has a HEPN domain which is present in many proteins involved in inter-genomic conflicts, suggesting that gp57r may inhibit heterotypic phage infections via its HEPN domain. We also show that Butters gp57r has orthologues in clinical isolates ofMycobacterium abscessus sp. including the phage therapy candidate strain GD91 which was found to be resistant to the panel of phages tested. It is conceivable that this GD91 orthologue of gp57r may mediate resistance to the subset of phages tested. Challenges of this nature underscore the importance of elucidating mechanisms of antiphage systems and mutations that allow for escape from inhibition.IMPORTANCEThe evolutionary arms race between phages and their bacteria host is ancient. During lysogeny, temperate phages establish a ceasefire with the host where they do not kill the host but derive shelter from it. Within the phenomenon of prophage-mediated defense, some temperate phages contribute genes that make their host more fit and resistant to infections by other phages. This arrangement has significance for both phage and bacterial evolutionary dynamics. Further, the prevalence of such antiphage systems poses a challenge to phage therapy. Thus, studies aimed at elucidating antiphage systems will further our understanding of phage-bacteria evolution as well as help with efforts to engineer therapeutic phages that circumvent antiphage systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3