Genomic characterization of the antiviral arsenal of Actinobacteria

Author:

Georjon Héloïse1ORCID,Tesson Florian21ORCID,Shomar Helena1ORCID,Bernheim Aude1ORCID

Affiliation:

1. Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, Inserm U1284, Paris, France

2. UMR 1137, IAME, Université de Paris, INSERM, Paris, France

Abstract

Phages are ubiquitous in nature, and bacteria with very different genomics, metabolisms, and lifestyles are subjected to their predation. Yet, the defence systems that allow bacteria to resist their phages have rarely been explored experimentally outside a very limited number of model organisms. Actinobacteria (Actinomycetota) are a phylum of GC-rich Gram-positive bacteria, which often produce an important diversity of secondary metabolites. Despite being ubiquitous in a wide range of environments, from soil to fresh and sea water but also the gut microbiome, relatively little is known about the anti-phage arsenal of Actinobacteria. In this work, we used DefenseFinder to systematically detect 131 anti-phage defence systems in 22803 fully sequenced prokaryotic genomes, among which are 2253 Actinobacteria of more than 700 species. We show that, like other bacteria, Actinobacteria encode many diverse anti-phage systems that are often encoded on mobile genetic elements. We further demonstrate that most detected defence systems are absent or rarer in Actinobacteria than in other bacteria, while a few rare systems are enriched (notably gp29-gp30 and Wadjet). We characterize the spatial distribution of anti-phage systems on Streptomyces chromosomes and show that some defence systems (e.g. RM systems) tend to be encoded in the core region, while others (e.g. Lamassu and Wadjet) are enriched towards the extremities. Overall, our results suggest that Actinobacteria might be a source of novel anti-phage systems and provide clues to characterize mechanistic aspects of known anti-phage systems.

Funder

Inserm

HORIZON EUROPE European Research Council

HORIZON EUROPE Framework Programme

Publisher

Microbiology Society

Subject

Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3