SIN3 gene regulatory activity is linked to RNA polymerase II pausing

Author:

Soukar Imad,Mitra Anindita,Pile LoriORCID

Abstract

ABSTRACTThe chromatin environment has a significant impact on gene expression. Chromatin structure is highly regulated by histone modifications and RNA polymerase II binding dynamics. The SIN3 histone modifying complex regulates the chromatin environment leading to changes in gene expression. InDrosophila melanogaster, theSin3Agene is alternatively spliced to produce different protein isoforms, two of which include SIN3 220 and SIN3 187. Both SIN3 isoforms are scaffolding proteins that interact with several other factors to regulate the chromatin landscape. The mechanism through which the SIN3 isoforms regulate chromatin is not well understood. Here, we analyze publicly available data sets to allow us to ask specific questions on how SIN3 isoforms regulate chromatin and gene activity. We determined that genes repressed by the SIN3 isoforms exhibited enrichment in histone H3K4me2 and H3K4me3 near the transcription start site. We observed an increase in the amount of paused RNA polymerase II on the promoter of genes repressed by the isoforms as compared to genes that require SIN3 for maximum activation. Furthermore, we analyzed a subset of genes regulated by SIN3 187 that suggest a mechanism in which SIN3 187 might exhibit hard regulation as well as soft regulation. Data presented here expand our knowledge of how the SIN3 isoforms regulate the chromatin environment and RNA polymerase II binding dynamics.Summary statementSIN3 cofactors can activate or repress genes. Using bioinformatic analysis, we find that histone methylation and RNA polymerase II binding profiles differ at SIN3-regulated genes with distinct transcriptional outcomes.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans

2. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update

3. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28-36;Proceedings/… International Conference on Intelligent Systems for Molecular Biology; ISMB. International Conference on Intelligent Systems for Molecular Biology,1994

4. The axon guidance gene lola is required for programmed cell death in the Drosophila ovary

5. Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3