A NOVEL ITERATIVE METHOD FOR SOLVING THE COUPLED SYLVESTER-CONJUGATE MATRIX EQUATIONS AND ITS APPLICATION IN ANTILINEAR SYSTEM
Author:
Publisher
Wilmington Scientific Publisher, LLC
Subject
General Mathematics
Reference34 articles.
1. K. Adisorn and C. Pattrawut, Approximated least-squares solutions of a generalized Sylvester-transpose matrix equation via gradient-descent iterative algorithm, Advances in Difference Equations, 2021, 2021, 266.
K. Adisorn and C. Pattrawut, Approximated least-squares solutions of a generalized Sylvester-transpose matrix equation via gradient-descent iterative algorithm, Advances in Difference Equations, 2021, 2021, 266.
2. K. Adison, C. Pattrawut and L. Wicharn, Convergence analysis of gradient-based iterative algorithms for a class of rectangular Sylvester matrix equations based on Banach contraction principle, Advances in Difference Equations, 2021, 2021, 17.
K. Adison, C. Pattrawut and L. Wicharn, Convergence analysis of gradient-based iterative algorithms for a class of rectangular Sylvester matrix equations based on Banach contraction principle, Advances in Difference Equations, 2021, 2021, 17.
3. R. Agarwal, S. Hristova, D. O'Regan and K. Stefanova, Iterative Algorithm for Solving Scalar Fractional Differential Equations with Riemann-Liouville Derivative and Supremum, Algorithms, 2020, 13(8), 184.
R. Agarwal, S. Hristova, D. O'Regan and K. Stefanova, Iterative Algorithm for Solving Scalar Fractional Differential Equations with Riemann-Liouville Derivative and Supremum, Algorithms, 2020, 13(8), 184.
4. M. Dehghan and M. Hajarian, The generalised Sylvester matrix equations over the generalised bisymmetric and skew-symmetric matrices, International Journal of Systems Science, 2012, 43(8), 1580–1590.
M. Dehghan and M. Hajarian, The generalised Sylvester matrix equations over the generalised bisymmetric and skew-symmetric matrices, International Journal of Systems Science, 2012, 43(8), 1580–1590.
5. M. Dehghan and R. Mohammadi-Arani, Generalized product-type methods based on bi-conjugate gradient (GPBiCG) for solving shifted linear systems, Comput. Appl. Math., 2016, 36(4), 1–16.
M. Dehghan and R. Mohammadi-Arani, Generalized product-type methods based on bi-conjugate gradient (GPBiCG) for solving shifted linear systems, Comput. Appl. Math., 2016, 36(4), 1–16.
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Iterative algorithm for a generalized matrix equation with momentum acceleration approach and its convergence analysis;Journal of the Franklin Institute;2024-08
2. Solving a system of complex matrix equations using a gradient-based method and its application in image restoration;Numerical Algorithms;2024-06-15
3. An Accelerated Jacobi-Gradient Iterative Algorithm to Solve the Matrix Equation $${\varvec{A}}\boldsymbol{ Z}-\overline{\boldsymbol{ Z}}{\varvec{B}}={\varvec{C}}$$;Iranian Journal of Science;2024-05-14
4. Iterative method for constrained systems of conjugate transpose matrix equations;Applied Numerical Mathematics;2024-04
5. Cyclic gradient based iterative algorithm for a class of generalized coupled Sylvester-conjugate matrix equations;Journal of the Franklin Institute;2023-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3