Convergence analysis of gradient-based iterative algorithms for a class of rectangular Sylvester matrix equations based on Banach contraction principle

Author:

Kittisopaporn Adisorn,Chansangiam PattrawutORCID,Lewkeeratiyutkul Wicharn

Abstract

AbstractWe derive an iterative procedure for solving a generalized Sylvester matrix equation$AXB+CXD = E$AXB+CXD=E, where$A,B,C,D,E$A,B,C,D,Eare conforming rectangular matrices. Our algorithm is based on gradients and hierarchical identification principle. We convert the matrix iteration process to a first-order linear difference vector equation with matrix coefficient. The Banach contraction principle reveals that the sequence of approximated solutions converges to the exact solution for any initial matrix if and only if the convergence factor belongs to an open interval. The contraction principle also gives the convergence rate and the error analysis, governed by the spectral radius of the associated iteration matrix. We obtain the fastest convergence factor so that the spectral radius of the iteration matrix is minimized. In particular, we obtain iterative algorithms for the matrix equation$AXB=C$AXB=C, the Sylvester equation, and the Kalman–Yakubovich equation. We give numerical experiments of the proposed algorithm to illustrate its applicability, effectiveness, and efficiency.

Funder

Thailand Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Reference40 articles.

1. Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. Academic Press, San Diego (1985)

2. Dullerud, G.E., Paganini, F.: A Course in Robust Control Theory: A Convex Approach. Springer, New York (1999)

3. Varga, A.: Robust pole assignment via Sylvester equation based state feedback parametrization. pp. 13–18 (2000)

4. Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometries, 3rd edn. Wiley, Chichester (2007)

5. Epton, M.: Methods for the solution of $AXD-BXC = E$ and its applications in the numerical solution of implicit ordinary differential equations. BIT Numer. Math. 20, 341–345 (1980)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3