Abstract
The initial value problem for a special type of scalar nonlinear fractional differential equation with a Riemann–Liouville fractional derivative is studied. The main characteristic of the equation is the presence of the supremum of the unknown function over a previous time interval. This type of equation is difficult to be solved explicitly and we need approximate methods for its solving. In this paper, initially, mild lower and mild upper solutions are defined. Then, based on these definitions and the application of the monotone-iterative technique, we present an algorithm for constructing two types of successive approximations. Both sequences are monotonically convergent from above and from below, respectively, to the mild solutions of the given problem. The suggested iterative scheme is applied to particular problems to illustrate its application.
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献