On the accuracy and precision of correlation functions and field-level inference in cosmology

Author:

Leclercq Florent1ORCID,Heavens Alan1

Affiliation:

1. Imperial Centre for Inference and Cosmology (ICIC) & Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK

Abstract

ABSTRACT We present a comparative study of the accuracy and precision of correlation function methods and full-field inference in cosmological data analysis. To do so, we examine a Bayesian hierarchical model that predicts lognormal (LN) fields and their two-point correlation function. Although a simplified analytic model, the LN model produces fields that share many of the essential characteristics of the present-day non-Gaussian cosmological density fields. We use three different statistical techniques: (i) a standard likelihood-based analysis of the two-point correlation function; (ii) a likelihood-free (simulation-based) analysis of the two-point correlation function; (iii) a field-level analysis, made possible by the more sophisticated data assimilation technique. We find that (a) standard assumptions made to write down a likelihood for correlation functions can cause significant biases, a problem that is alleviated with simulation-based inference; and (b) analysing the entire field offers considerable advantages over correlation functions, through higher accuracy, higher precision, or both. The gains depend on the degree of non-Gaussianity, but in all cases, including for weak non-Gaussianity, the advantage of analysing the full field is substantial.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accurate field-level weak lensing inference for precision cosmology;Physical Review D;2024-07-22

2. EFTofLSS meets simulation-based inference: σ 8 from biased tracers;Journal of Cosmology and Astroparticle Physics;2024-05-01

3. Map-based cosmology inference with weak lensing – information content and its dependence on the parameter space;Monthly Notices of the Royal Astronomical Society: Letters;2023-10-04

4. Galaxy clustering from the bottom up: a streaming model emulator I;Monthly Notices of the Royal Astronomical Society;2023-04-25

5. Robust simulation-based inference in cosmology with Bayesian neural networks;Machine Learning: Science and Technology;2023-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3